Variational integrators for degenerate Lagrangians, with application to point vortices

نویسندگان

  • Clarence W. Rowley
  • Jerrold E. Marsden
چکیده

We develop discrete mechanics and variational integrators for a class of degenerate Lagrangian systems, and apply these integrators to a system of point vortices. Excellent numerical behavior is observed. A longer term goal is to use these integration methods in the context of control of mechanical systems, such as coordinated groups of underwater vehicles. In fact, numerical evidence given in related problems, such as those in [2] shows that in the presence of external forces, these methods give superior predictions of energy behavior.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

. N A ] 1 8 A ug 2 00 5 GENERALIZED GALERKIN VARIATIONAL INTEGRATORS

Abstract. We introduce generalized Galerkin variational integrators, which are a natural generalization of discrete variational mechanics, whereby the discrete action, as opposed to the discrete Lagrangian, is the fundamental object. This is achieved by approximating the action integral with appropriate choices of a finite-dimensional function space that approximate sections of the configuratio...

متن کامل

Generalized Galerkin Variational Integrators

We introduce generalized Galerkin variational integrators, which are a natural generalization of discrete variational mechanics, whereby the discrete action, as opposed to the discrete Lagrangian, is the fundamental object. This is achieved by approximating the action integral with appropriate choices of a finite-dimensional function space that approximate sections of the configuration bundle a...

متن کامل

An Overview of Lie Group Variational Integrators and Their Applications to Optimal Control

We introduce a general framework for the construction of variational integrators of arbitrarily high-order that incorporate Lie group techniques to automatically remain on a Lie group, while retaining the geometric structure-preserving properties characteristic of variational integrators, including symplecticity, momentum-preservation, and good long-time energy behavior. This is achieved by con...

متن کامل

Variational Integrators for Almost-Integrable Systems

We construct several variational integrators—integrators based on a discrete variational principle—for systems with Lagrangians of the form L = LA + εLB, with ε ≪ 1, where LA describes an integrable system. These integrators exploit that ε ≪ 1 to increase their accuracy by constructing discrete Lagrangians based on the assumption that the integrator trajectory is close to that of the integrable...

متن کامل

Lie-Poisson integrators: A Hamiltonian, variational approach

In this paper we present a systematic and general method for developing variational integrators for LiePoisson Hamiltonian systems living in a finite-dimensional space g∗, the dual of Lie algebra associated with a Lie group G . These integrators are essentially different discretized versions of the Lie-Poisson variational principle, or a modified Lie-Poisson variational principle proposed in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002